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Advantage of LHD-type helical fusion reactor

* LHD-type helical fusion reactor has several
advantages as a power plant

— Steady-state operation capability with a low
recirculation power (common with helical
system)

— Highly reliable core plasma design based on
plenty of LHD experimental data &
numerical tools verified by LHD experiment

— Coil with a small curvature variation
— Robust divertor field structure

— Large aperture for the maintenance of in-
vessel components
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Two major Issues in LHD-type reactor design
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“Original” development strategy of helical fusion reactor
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“New” development strategy of helical fusion reactor
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Changes in the design prerequisites

Plasma temperature <9 keV <11.7 keV
(neoclassical transport (optimum value from the viewpoint
calculation) of plasma power balance )

Beta value <3.0% < 5.0% (expected value by
(linear MHD stability analysis) configuration optimization)

Confinement improvement 1.0 1.3
(direct extrapolation from LHD) |} (deterioration due to the increase of
plasma beta is considered)

Helium ash fraction 5% 3% (configuration optimization)
Alpha particle loss 15% (orbit calculation) 5% (configuration optimization)

HC current density <48 A/mm? < 80 A/mm? (development target)
Enlargement of the space ~15% (supplemental coils)
between helical coil and plasma optimization of HC winding law)
Attenuation of fast neutron flux 1 order atten. by 30 cm 1 order atten. by 20 cm (optimization
in breeding zone of material selection and layout)
Divertor heat recovery 20% 30% (by design optimization)
Thermal efficiency 42% 50% (S-CO, gas turbine)

Total efficiency of heating system 50% 66% (target of JA-DEMO)

Cryogenic efficiency 1.5% (20 K operation) 2.0% (by design optimization)
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Room for optimization of the shape of helical coils

T. Goto et al., Plasma Fusion Res. 16 (2021) 1045085.
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 Slight change in the pitch modulation & (0.1->0.0) enables
simultaneous improvement of MHD stability and energy

confinement. However, the blanket space decreases.
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Helical coil optimization code “OPTHECS”
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* Optimization of the coil shape and current by considering
overall plasma performance has become possible.
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Optimization including the blanket space

* Optimization targets regarding the
blanket space have been added

— coil-to-LCFS distance (1)
— thickness of ergodic layer (2)

* Coil shape is freely given with a b-
spline curve (beyond the
conventional winding law)

* Optimization with following conditions was conducted
— Increase the coil-to-LCFS distance
— Decrease the thickness of ergodic layer
— Decrease the neoclassical particle diffusion coefficient
— Keep plasma volume (within ~15% variance)
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Optimization result — coil shape and blanket space
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e ~10% increase in the blanket space is achieved by only a
slight change in the helical coil shape

=» Initial candidate configuration
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Integrated physics analysis

* The plasma performance of the initial candidate
configuration is examined and compared with those of
the reference configurations (= 0.1 in the previous
design and a = 0.0, which is the optimum point in the
range of the conventional winding law).

* Following calculations were conducted:
— 3D MHD equilibrium calculation (HINT)
— Linear MHD stability analysis (KSPDIAG)
— Neoclassical transport calculation (GSRAKE)

e (Calculation conditions:

— Reactor specifications equivalent to FFHR-c1 : R, = 10.92 m,
B,=7.3T,n,=2.8x10"m3, T, =9 keV
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Z[m]

Calculation result — MHD equilibrium (HINT)
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* Magnetic axis position shifts outward with increasing beta.
* |Intense ergodization of the peripheral magnetic field when

> 5% (Adjustment of the magnetic axis position by
0

controlling vertical field may be needed)
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Calculation result - MHD equilibrium (VMEC)
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Mercier parameter D,

Calculation result — MHD stability (KSPDIAG)
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Calculation result — Neoclassical transport (GSRAKE)
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* Plasma performance is slightly inferior to the reference cases,
but comparable performance is obtained with a larger blanket

space. |
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Summary and future work

OPTHECS has greatly advanced the configuration
optimization study for the LHD-type helical reactors.

— Helical coil shape beyond the conventional winding law

— Overall optimization on physics & engineering design conditions

Integrated physics analysis for the initial candidate
configuration has been conducted

— Comparable (slightly inferior) performance as the reference case
(LHD-like) is obtained w/ ~10% increase in the blanket space.

Further optimization will be conducted
— OPTHECS w/ finite-beta equilibrium & turbulent model
— Neoclassical transport analysis by KNOSOS

— Target : ~20% increase of the blanket space, MHD stability at B, =
5% and 1.3 times confinement improvement to realize the target
design (P, = 100 MWe with 2 X LHD size reactor, FFHR-b3)
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